

Imperial College London

Mitigating the climate impact of aviation

Sajedeh Marjani, Edward Gryspeerdt, Lindsay Bennett, Oliver Driver, Ryan Neely, Marc Stettler, Chris Walden

T_{SAC}- Schmidt-Appleman-Criterion (threshold temperature for contrail formation)

T_{SAC}- Schmidt-Appleman-Criterion (threshold temperature for contrail formation)

What is their climate impact?

- Contrails trap infra-red radiation (like a greenhouse gas) and warm the climate
- ▶ Likely bigger than all the CO₂ emitted by every aircraft ever (but uncertain)

What is their climate impact?

- Contrails trap infra-red radiation (like a greenhouse gas) and warm the climate
- ▶ Likely bigger than all the CO₂ emitted by every aircraft ever (but uncertain)

Provides a pathway for immediate reduction in the climate impact of aircraft

Operational contrail avoidance

Route aircraft around contrail forming regions

Comes at fuel penalty - extra CO₂ emissions

Need accurate contrail models to determine suitable tradeoffs

Engberg et al, ACP, 2025

What is the impact of individual aircraft?

- Chase-planes can measure contrails at formation.
- Long-lived contrails have the largest climate impact...

Contrail OBservations And Lifecycle Tracking (COBALT)

- Air traffic data is used to locate potential contrails/aircraft modified clouds
 - Camera network provides short-term evolution data (seconds to hours)
 - Detailed cloud information from a cloud radar
 - Satellite tracking of longer-lived effects (4 days)

Contrail OBservations And Lifecycle Tracking (COBALT)

- Air traffic data is used to locate potential contrails/aircraft modified clouds
 - Camera network provides short-term evolution data (seconds to hours)
 - Detailed cloud information from a cloud radar
 - Satellite tracking of longer-lived effects (4 days)
- Satellite observations translate regional measurements to a global picture of aircraft impacts on clouds

Contrail OBservations And Lifecycle Tracking (COBALT)

- Air traffic data is used to locate potential contrails/aircraft modified clouds
 - Camera network provides short-term evolution data (seconds to hours)
 - Detailed cloud information from a cloud radar
 - Satellite tracking of longer-lived effects (4 days)
- Satellite observations translate regional measurements to a global picture of aircraft impacts on clouds

COBALT observations region Southern UK (2024-2025)

With Chris Walden (STFC), Ryan Neely, Lindsay Bennett (NCAS/Leeds), Marc Stettler (Imperial)

Matching to Models

Two types of measurements:

- 1. Tracking individual contrails from specific aircraft
 - Evaluate aircraft-level models (used for contrail avoiding rerouting)
 - Measure the impact of new fuels
 - Provide a test-bed region for industrial partners

Matching to Models

Two types of measurements:

- 1. Tracking individual contrails from specific aircraft
 - Evaluate aircraft-level models (used for contrail avoiding rerouting)
 - Measure the impact of new fuels
 - Provide a test-bed region for industrial partners
- 2. Large scale (>1000km²) tracking of contrail formation/coverage
 - Evaluate climate and regional model parametrisations
 - Support testing of global mitigation strategies

Matching to Models

Two types of measurements:

- 1. Tracking individual contrails from specific aircraft
 - Evaluate aircraft-level models (used for contrail avoiding rerouting)
 - Measure the impact of new fuels
 - Provide a test-bed region for industrial partners
- 2. Large scale (>1000km²) tracking of contrail formation/coverage
 - Evaluate climate and regional model parametrisations
 - Support testing of global mitigation strategies

Expecting to use EarthCARE observations for both

Embedded contrails

Some observations of aircraft impacts on existing clouds

impacts on optical thickness and ice number

Recent observations suggesting significant "in-cloud" flight time for commercial aircraft

Possibly as high as 50%

(Uncertain) indications of ice number changes during Covid

An indicator of aerosol-cloud effects?

 Compositing EarthCARE data and matching to aircraft data, geostationary and ground-based observations for temporal context

- Compositing EarthCARE data and matching to aircraft data, geostationary and ground-based observations for temporal context
- Building contrail model evaluation dataset

- Compositing EarthCARE data and matching to aircraft data, geostationary and ground-based observations for temporal context
- Building contrail model evaluation dataset
- Understanding high-cloud behaviour through natural experiments (using aircraft as a perturbation to high cloud)

- Compositing EarthCARE data and matching to aircraft data, geostationary and ground-based observations for temporal context
- Building contrail model evaluation dataset
- Understanding high-cloud behaviour through natural experiments (using aircraft as a perturbation to high cloud)

Assessing (and mitigating) the climate impact of aviation

